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The utility of vehicle math models extends beyond human-in-the-loop simulation. It is 
desirable to deploy a given model across a multitude of applications that target design, 
analysis, and research. However, the vehicle model alone represents an incomplete 
simulation. One must also replicate the environment models (e.g., atmosphere, gravity, 
terrain) to achieve identical vehicle behavior across all applications. Environment models 
are increasing in complexity and represent a substantial investment to re-engineer for a new 
application. A software component that can be rehosted in each application is one solution to 
the deployment problem. The component must encapsulate both the vehicle and 
environment models. The component must have a well-defined interface that abstracts the 
bulk of the logic to operate the models. This paper examines the characteristics of a 
rehostable modeling component from the perspective of a human-in-the-loop simulation 
framework. The Langley Standard Real-Time Simulation in C++ (LaSRS++) is used as an 
example. LaSRS++ was recently redesigned to transform its modeling package into a 
rehostable component. 

Acronyms 
DAVE = Dynamic Aerospace Vehicle model Exchange  
EOM = equations of motion 
FSSB = Flight Simulation and Software Branch 
IDL = intermediate description language 
KLOC =   one thousand lines of code 
LaSRS++ = Langley Standard Real-Time Simulation in C++ 
XML = Extensible Markup Language 

I. Introduction 
ROPRIETARY simulation architectures remain the norm in the simulation community.1 Exchange of dynamic 
models among different organizations continues to take the form of partial source code, data files, 

documentation, and limited check cases. The source code in a delivery may not be reusable. The source code may be 
coupled to other source files that were not delivered or the source code may not be portable. The effort to reuse the 
source code in the acquirer’s† simulation architecture may be greater than re-engineering the model. Thus, re-
engineering models is common. The Flight Simulation and Software Branch (FSSB) at NASA Langley Research 
Center (LaRC) has experienced the following problems with re-engineering and revalidating dynamics models from 
another source. 

P 

• The supplier may not have kept documentation current with their implementation, and documentation 
sometimes contains errors. Both problems lead to undue debugging activity required to convince the 
acquirer that their implementation matches the documentation even though it does not match delivered 
check cases. The debugging activity is also necessary for the acquirer to formulate the correct questions to 
ask the supplier in order to resolve the discrepancy, if support from the supplier is available.  

• Check cases may have incomplete scenario descriptions or incomplete results. Incomplete check cases 
cause additional work if support from the supplier is not available. The developer must reverse engineer the 
missing scenario data from the results. When results are incomplete, the developer is left with insufficient 

                                                           
* Aerospace Technologist, Flight Simulation and Software Branch, MS 125B. Senior Member AIAA. 
† The organization that provides the dynamics model will be called the “supplier”. The organization receiving the 
dynamics model will be the “acquirer”. 
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data to narrow the source of check case discrepancies; the developer must inspect a broad set of source 
code, possibly the whole model, for the defect.  

• Check cases do not sufficiently cover the model code. The check cases do not exercise all of the code paths 
that one could expect to traverse during a normal flight (i.e., all of the nominal cases are not covered). 
Check cases rarely cover exceptional scenarios (i.e. scenarios at or beyond the flight envelope enclosed by 
aerodynamic and engine tables). The acquirer has no information to independently validate remaining code 
paths. 

• The delivery usually comprises only the dynamic model of the vehicle. It may not include other models or 
algorithms that can affect check case results such as the equations of motion (EOM), trim algorithms, 
integration techniques (for derivatives), the atmosphere model, and the world model (gravity, shape, and 
rotation). These missing items add a perception of uncertainty to the supplier check case results that can 
mask defects in the acquirer implementation when discrepancies in check case results are small. 

Even when support from the supplier is available, there can be a significant delay in obtaining an answer that solves 
an issue; and the communication expends effort for both organizations. 

Organizations now face similar issues internally as the demand to deploy simulation models in design, analysis, 
and research applications grow. These applications can represent architectures that differ significantly from the 
simulation architecture. The organization is once again faced with the choice of reuse or re-engineering. However, 
the organization now has a greater economic incentive to favor reuse. Re-engineering and revalidating a dynamic 
model for each deployment represents a duplication of effort within the organization. That duplication extends into 
maintenance. Each team performs a duplicate effort to implement model changes and validate them. Re-engineering 
also introduces overhead in the form of additional communication. The supplier must provide technical support for 
acquirers. The supplier must mentor acquirers on the implementation details of the dynamics model and portions of 
the simulation architecture. The supplier must establish processes that ensure changes to the dynamics model are 
communicated to all acquirers. Identical behavior also gains greater importance for internal use. Even small 
differences in the behavior of the dynamics model between simulation, design, analysis, and research applications 
could lead projects in the wrong direction and may not be caught until a failure occurs. When a difference in 
behavior is found, the supplier may be asked to generate additional test cases to aid acquirers in debugging. 

An organization can choose between two approaches to reuse, an intermediate description language (IDL) or 
source-code reuse. The IDL defines the dynamic model using high-level, code-neutral constructs. For example, an 
IDL file might describe the model as a hierarchy of parts with each part described using equations, data tables, and 
relationships (e.g. source of inputs, order of execution). A code translator generates code from the IDL for the target 
application. Customized code generation is the main advantage of IDLs. A well-constructed code translator will 
produce code that compiles and links into the target application without any manual code modifications. Moreover, 
the code can take full advantage of the target application’s services. The main disadvantage to an IDL is the lack of 
mature standards and tools. In addition to the code translators, tools for creating and maintaining the IDL source are 
important. For effective reuse using IDLs, developers must make future model changes to the IDL source and 
regenerate the code. Because of the lack of standards and tools, the organization must invent the IDL and invest 
resources to develop tools, translators, documentation, and training. A long-term commitment to the IDL is required 
to see a return on this initial investment and its recurring maintenance costs. Recent developments aim to ease the 
adoption of IDLs. Jackson and Hildreth have proposed a standard IDL for dynamic models that is based on 
Extensible Markup Language (XML); this IDL is called Digital Aerospace Vehicle model Exchange (DAVE).1 
Graphical modeling tools have also matured to the point where they could double as IDLs and reduce start-up costs. 
For example, an organization could use Mathworks’ Simulink®‡ as an IDL; however, the organization may still 
need to invest resources in creating custom Simulink® blocks and custom Real-Time Workshop® code generators 
for their target applications. 

Source-code reuse is the other approach an organization can choose. This paper only considers verbatim reuse 
(i.e. reuse without modifying the source).2 Though source-code reuse does not require invention of a new language 
or creation of new tools, source-code reuse does have its own initial costs. Source code must be designed for reuse. 
A new reuse program may require extensive redesign of the existing simulation architecture; it can be more cost 
effective to design a new simulation architecture from scratch and abandon the old architecture. However, source-
code reuse programs do not require the same level of investment as IDLs in developing new tools and training. The 
challenge for source-code reuse programs is producing a design that accommodates all of the target applications. 
The organization may have to compromise. The reusable design may provide the minimum useful interface for all 
                                                           
‡ Visit http://www.mathworks.com for more information.  Simulink® and Real-Time Workshop® are registered 
trademarks of Mathworks. 
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target applications. However, the reusable code may seamlessly integrate with a subset of the applications. 
Developers for the remaining applications will have to build an interface and translation layer to hook the reusable 
code into the target application and its services.  

This paper examines the source-code reuse approach with an emphasis on rehosting the dynamic model. The 
author defines “rehosting” as a specialized form of reuse in which the component is a mostly self-operating whole 
that takes direction (i.e. simple commands) from its host. This paper explores design characteristics for a human-in-
the-loop simulation architecture that allow the dynamic model to be re-hosted in other applications. The design must 
first target a level of abstraction for reuse. The paper compares three abstraction levels: universe (i.e. vehicle with 
environment models), vehicle, and vehicle subsystem (e.g. aerodynamics model). The universe level has the greatest 
potential to deliver low-cost integration and identical behavior across multiple applications. Once a level of 
abstraction is selected, the simulation architecture must isolate the rehostable model from other packages; 
architectural isolation involves data communication and interaction control with the rehostable model. Architectural 
isolation accomplishes physical separation of the model. The definitions of inputs and services of the rehostable 
model’s interface can still logically tie the model to the supplier’s environment. In a rehostable model, the 
definitions must be free from assumptions about the application environment. The paper focuses on definitions 
specific to vehicle simulation: the cockpit data definitions and the integration services (for derivatives). To be 
useful, the rehostable model must allow acquirers to define new scenarios (i.e. initial conditions). The scenario 
definition services influence how suppliers share scenarios for model validation. Rehostable models must also be 
portable. However, dynamic models do not have portability issues unique from other types of software and detailed 
treatments on portability are plentiful. This paper will not discuss portability. 

The paper uses the Langley Standard Real-time Simulation in C++ (LaSRS++) in its examples.3 LaSRS++ is the 
simulation framework used by FSSB to build simulation products for LaRC’s high-fidelity research simulators. 
Recent design changes enable rehosting of the LaSRS++ Model package§. The paper also uses LaSRS++ as a case 
study in updating an existing architecture for model rehosting. As a demonstration of a rehostable architecture from 
a production framework, the paper presents a simple main program that performs a pitch stick doublet on the high-
fidelity Boeing 757 model from LaSRS++.  

II. Level of Abstraction 
Organizations can choose to design for reuse at any level of abstraction within the simulation architecture. This 

paper will compare and contrast three levels. These levels are depicted in Figure 1: 
1. Universe – This level includes 

the entire modeling environment 
including the vehicle, world, and 
environment models plus any 
support computations such as 
relative geometry. 

Vehicle

Subsystem
Model

Vehicle States (EOM)

Other Subsystems

Universe

Time Step
Simulation Controls
Configuration Settings
Pilot Controls

Atmosphere
Gravity
Terrain
Navigation Database
Relative Geometry

2. Vehicle – This level includes the 
code that defines the vehicle and 
its subsystems. This level is 
assumed to include the EOM and 
the trim algorithm. 

3. Subsystem Model – This level 
includes only the code that 
defines vehicle subsystems such 
as the engine model. This level 
includes all of the vehicle’s 
subsystem models. 

Figure 1 Input Interface for Different Levels of Abstraction

                                                           
§ This paper uses the Unified Modeling Language (UML) definition of “package”, “a general purpose mechanism 
for organizing elements into groups”. The LaSRS++ Model package is a group of classes logically associated with 
dynamic modeling. 
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Table 1 Commands at Each Level of Abstraction in LaSRS++ 

Universe Vehicle Subsystem Model 
Universe() Vehicle constructor Subsystem Model constructor 
~Universe() Vehicle destructor Subsystem Model destructor 
resetPositionalModel()a doResetCalc() initialize() 
doTrim() doTrimCalc() resetInitialConditions() 
doHold() doHoldCalc() processInitializationFile() 
doOperate() doOperateCalc() calculate() 
propagatePositionalModel() propagateSate()  
doPrint() copyDataRamFileToPhysicalFile()  
generateLinearModel() generateLinearModel()  
resetEnvironment()   
updateEnvironment()   
calcGeometry()   
addPositionalModel()   
delPositionalModel()   

a The top of the vehicle hierarchy in LaSRS++ is PositionalModel. A PositionalModel is any model 
that occupies space. The Vehicle class derives from PositionalModel and represents a 
PositionalModel that responds to forces and moments.  

For a given level of abstraction, a rehostable design must define the minimum interface required to feed and operate 
the component. Figure 1 provides a simplified depiction of the flow of inputs in LaSRS++. Other simulation 
architectures may not have such a clear division between levels of abstraction. For example, a given simulation 
architecture may embed gravity and the word shape model (part of “terrain” inputs) in the vehicle’s EOM.  

The arrows in Figure 1 represent data that the host application must input into a given level of abstraction.  (The 
arrow’s color matches the source abstraction level with yellow representing inputs external to all models.) Universe 
is the level of abstraction with the fewest input requirements. Inputs become more numerous at the lower levels. At 
the Universe level, the inputs represent operator decisions; the inputs are not outputs from a dynamic model¶. At 
lower levels, the host application must re-engineer environment models (atmosphere, gravity, terrain, etc.) and other 
algorithms (e.g. EOM, trim, relative geometry) to generate some of the inputs. As a simulation architecture matures, 
the re-engineering of models and algorithms can represent a substantial development effort. For example, the 
LaSRS++ environment models (atmosphere, gravity, terrain, and navigation database) contain 30 KLOC and 
represent ~10% of the simulation framework. If an organization or project demands identical behavior from each 
model deployment, acquirers must perform additional testing to certify that re-engineered models and algorithms 
perform identically to the supplier’s model or algorithm. 

In LaSRS++, the difference in interface size between levels of abstraction is primarily input driven. The number 
of commands is small compared to the number of data items. Table 1 lists commands at each abstraction level. The 
listed commands constitute the minimal interface for operating a given abstraction level. The list shows the methods 
that LaSRS++ calls to operate that abstraction level. Each level has a richer set of commands that are accessible. 
However, internal interactions within a level of abstraction invoke the additional commands. Applications could use 
the additional commands to exercise fine control over the model. However, the economic goal of rehosting is 
replicating model behavior across multiple environments for low cost. A rehostable model assumes that the acquirer 
is willing to trade control for simplicity. The rehostable model aims to reduce model operation to a few semi-
autonomous commands. In LaSRS++, the number of commands decreases as one progresses to lower abstraction 
levels because the scope of control also decreases. However, each increase in scope does not result in an equal 
increase in commands. The Universe level exerts control over environment models, vehicle models, and relative 
geometry calculations within a little more than double the number of commands provided by the Subsystem Model 
level. Higher levels of abstraction do not trade scope of control for interface complexity. The work to interface the 
additional commands at a higher-level of abstraction should require less effort than re-engineering the control logic 
and rehosting a lower-level abstraction. 

The Universe level of abstraction has the greatest potential to achieve rehosting goals of model replication with 
the lowest effort. The Universe level has the smallest input interface. Universe inputs are not outputs from models or 
algorithms that acquirers must re-engineer and certify as identical to the supplier’s model or algorithm. Relative to 
                                                           
¶ The time step in LaSRS++ is fixed, and LaSRS++ treats it as a configuration setting. 
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its size, the command interface at the Universe-level exerts greater control on behalf of the acquirer than lower 
abstraction levels. The acquirer sees a net savings over re-engineering the control logic and reusing a lower-level 
abstraction. The remainder of the paper will focus on rehosting at the Universe level. However, some of the design 
characteristics of a rehostable Universe also apply to a rehostable Vehicle and Subsystem Model. The LaSRS++ 
architecture provides rehosting at both the Universe and Subsystem Model levels. However, LaSRS++ does not 
currently support rehosting at the Vehicle level.  

III. Architecture Isolation 
The level of abstraction establishes the context for the rehostable model’s inputs and commands. The 

mechanisms for communicating input data and the external interactions of the model’s commands must also be 
designed for rehosting. Communication mechanisms can introduce source code dependencies that prevent a given 
level of abstraction from being re-hosted in a new application. Similarly, a model can be implemented with control 
autonomy that extends outside of itself. Directing services from external packages or pushing outputs to external 
packages will cause the model to depend on the source files of the external packages. A model cannot be removed 
from an architecture and rehosted unless it is isolated from the surrounding architecture. 

A. Communications 
The top yellow arrow in Figure 1 represents interface data that originates outside of a rehostable Universe. 

Figure 1 also illustrates that this external data must flow down to lower levels. To make Universe rehostable, the 
communication mechanism that delivers the interface data must not bind Universe to the supplier’s architecture. 
Such bindings can make Universe inseparable from the remaining supplier architecture, especially if such bindings 
are pervasive throughout the architecture. Even when the bindings have limited scope, acquirers must include or re-
engineer parts of the supplier’s architecture to rehost the model. The acquirers will require mentoring from the 

supplier to successfully integrate the model. 
Moreover, the integration is less resilient to changes 
in the supplier architecture. 

To illustrate, Figure 2 depicts the high-level 
architecture of LaSRS++. LaSRS++ divides, into 
packages, services that are typical in many human-
in-the-loop simulation architectures. These services 
are the source of the external input data to the Model 
package (i.e., the yellow arrow in Figure 1), which 
represents the Universe level of abstraction. Real-
Time Services provides the time step. Simulation 
Control provides the simulation control data (e.g. 
mode) and configuration settings. The Hardware I/O 

subsystems (Hardware Interface and Hardware Communication) provide the pilot inputs from the cockpit. The 
arrows in Figure 2 depict the direction of dependencies in the LaSRS++ framework. LaSRS++ does not bind Model 
to its data sources; the binding occurs in the opposite direction. (Simulation Control has responsibility for 
communicating Real-Time Services data to the Model.)  Isolating data communication requires a simple non-
binding mechanism where external objects push inputs into the rehostable model and pull outputs from the 
rehostable model. Some LaSRS++ communication implements this push-pull mechanism directly using method 
calls.  LaSRS++ uses two other communication designs that build upon the push-pull mechanism, the mediator 
pattern5 and passing handles.  

The Hardware I/O subsystems are an example of the mediator pattern. The Hardware Interface acts as a mediator 
for the Model and Hardware Communication. The Hardware Interface is responsible for reading inputs from the 
Hardware Communication and inserting the data in the Model. Likewise, the Hardware Interface actively reads 
outputs from the Model and inserts the data into Hardware Communication. A typical input operation in Hardware 
Interface would have the form: 

Simulation
Control

User
Interface

Model Hardware
Interface

Hardware
Communication

Real-Time
Services

Hardware I/O

Figure 2 LaSRS++ High Level Architecture 

dynamic_model->putInput(hardware_communication->getOutput()); 
As implemented in LaSRS++, the mediator pattern is a design realization of the push-pull communication 
mechanism. Reference 6 provides more information about use of the mediator pattern for LaSRS++ hardware I/O. 

LaSRS++ communicates the remaining “external” data to the Model using handles. These handles take the form 
of files or object references. LaSRS++ reads configuration settings from a file. All packages use the same file for 
configuration settings. Each package is responsible for parsing the package’s configuration settings from the file. 
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SimulationModel
mode : Mode&
timer : Timer &

Vehicle VehicleSystem SubsystemModel

Figure 3 Vehicle-Subsystem Relationships 

Thus, Simulation Control 
communicates configuration 
settings to the Model by pushing 
the file. Simulation Control uses 
object reference to communicate 
the time step and simulation 
control data. The time step and 
simulation control data are 
packaged into self-contained 
classes, i.e. classes with no 
external dependencies on any 
LaSRS++ package. The major 
classes used in this 

communication are Timer (time step) and Mode (simulation control). Simulation Control creates objects of these 
classes and pushes references to these objects into the Model. When Simulation Control updates the objects with 
new data, the new data is instantly accessible to the Model through the object reference. The key here is that the 
classes, which act as intermediaries for communication, are themselves isolated from the packages and do not reside 
in any package library. In LaSRS++, the Timer and Mode classes are compiled with other package neutral classes 
(such as integrators) into a “toolbox” library. 

LaSRS++ uses the same communications mechanisms to provide architectural isolation to the subsystem models, 
enabling the subsystem models to be rehostable components. LaSRS++ uses the mediator pattern to isolate each 
subsystem model from its input sources. Each subsystem model has a companion mediator derived from the 
VehicleSystem class (see Figure 3). The VehicleSystem object retrieves the subsystems inputs from the appropriate 
sources. It then inserts the inputs into the subsystem model and operates the subsystem model. More details on the 
use of the mediator pattern for subsystem models are found in Refs. 7 and 8. The mediator pattern does not handle 
all the input sources. Time and simulation control data are communicated using object references. In fact, the object 
references that the Simulation Control package inserts into the Model package are distributed throughout the models 
in the package. Each higher-level abstraction passes these references to next level. LaSRS++ facilitates and enforces 
this reference passing by embedding these references as constructor arguments for the base class of all dynamic 
models, SimulationModel. When a dynamic model is created, it receives the references from its creator and, within 
its constructor, will pass those references onto models that it creates. 

B. Control of External Interactions 
Communications alone do not provide the architectural isolation required for rehostable models. The rehostable 

model must relinquish control of its external interactions. The external target of the interaction must assume control 
of the interaction or it must delegate control to an independent (i.e. reusable) proxy. In the latter case, the 
intermediary becomes part of the interface to the model when it is rehosted. Data communication as discussed in the 
previous section is one form of control. This section will focus on control of activities.  

Vehicle destruction in LaSRS++ is an example of reassigning control to the target. The top-level class in the 
Model package is Universe. Universe maintains a list of vehicle objects. Removal from Universe’s list is the first 
step in deleting a vehicle object. In previous LaSRS++ designs, Universe was given responsibility for deleting the 
vehicle object. Deleting a vehicle object in LaSRS++ requires more than deleting the dynamic model. The Hardware 
Interface objects associated with the vehicle object must also be destroyed to reclaim memory and hardware 
connections (i.e. Hardware Communication objects) for future vehicle objects. Universe had to send a request to 
Simulation Control for deletion of the associated Hardware Interface objects. Universe could not be reused without 
inclusion or re-engineering of this Simulation Control interface. The recent LaSRS++ redesign corrected this issue 
by reassigning control of Vehicle deletion to the Simulation Control package. Simulation Control now requests that 
Universe remove the Vehicle from its list. Then, Simulation Control deletes the Vehicle and its associated Hardware 
Interface objects. Universe no longer depends on Simulation Control and is reusable without including or re-
engineering the Simulation Control interface. 

Simulation mode control in LaSRS++ is an example of delegating control to a proxy. The main simulation 
control datum in LaSRS++ is an enumeration of “modes.” The modes in LaSRS++ are RESET, TRIM, HOLD, 
OPERATE, PRINT, and LINEAR_MODEL. Some Model classes request mode changes. For example, the 
VehicleLimits hierarchy transitions the simulation to HOLD from OPERATE when a vehicle state exceeds a 
programmed limit. The limits can be used to define conditions that would exceed the structural limits of the real 
aircraft or that exceed safety limits for humans riding in a motion base. Originally, a VehicleLimits object would 
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directly request the mode transition from Simulation Control. The VehicleLimits objects could not be reused without 
including or re-engineering the Simulation Control interface. The redesign corrected this by converting the mode 
enumeration into an independent class called Mode, which encapsulated the enumeration and all related services. As 
explained in the previous section, Simulation Control creates the Mode object and passes it as an object reference to 
the Model. The reference is then passed from parent model to child. The VehicleLimits object now requests the 
transition using the object reference. Simulation Control later queries the Mode object for a new transition request 
and executes the request. Reuse of the VehicleLimits object now requires the Mode class, but this dependency is not 
a problem because the Mode class is an independent, reusable class. The Mode class becomes part of the interface to 
model when it is rehosted. 

IV. Data and Service Definitions 
Architecture isolation enables the model to be physically rehosted in a new application. However, the definitions 

of the inputs and services can still logically tie the rehostable model to the supplier’s environment and introduce 
additional effort or constraints for acquirers. This section examines two topics specific to vehicle models: definition 
of cockpit inputs and integration strategy (for derivatives). 

A. Definition of Cockpit Inputs 
Section III.A discussed the necessity of isolating the rehostable model from the source of its inputs. However, 

the definition of cockpit inputs should also be free from the supplier’s environment. If the input definition reflects 
the raw hardware data in the supplier’s environment, the input definition defeats the isolation provided by the 
communications mechanism. The rehostable model would be required to scale the inputs for the dynamic models 
and this scaling algorithm would be specific to one hardware cockpit. Rehosting the model would force acquirers to 
re-engineer the interface of the hardware cockpit. The interface may not make physical sense in a new environment. 
The acquirer may need to gain a depth of knowledge into the hardware, for which they would not otherwise have a 
use. Practical rehosting of the model requires a cockpit interface whose data content conveys general meaning to 
acquirers. Representing the data in the units expected by the vehicle model is one choice. The interface is tailored to 
the vehicle, and the interface has physical meaning to all acquirers. However, acquirers working with multiple 
vehicle models will have to tailor an interface to each model. Normalizing the cockpit inputs is an alternate design 
choice that allows acquirers to create a single generic interface to all models. LaSRS++ vehicles use a cockpit 
interface in which the cockpit controls are normalized between 0 and 1 (e.g. spoiler handle) or -1 and 1 (e.g. 
longitudinal stick) as appropriate. One disadvantage to normalized cockpit interfaces is an increase in computation. 
The application must normalize its inputs before feeding them to the rehostable model. The rehostable model must 
then scale the normalized values to the units and range expected by the vehicle model. It is a choice of reduced 
development cost and maintenance over increased computation. In the case of LaSRS++, the choice was not based 
on reuse considerations; LaSRS++ uses normalized cockpits to allow any vehicle model to run in any simulator 
operated by FSSB.6  Another disadvantage of normalized cockpits is that the supplier must document the scaling of 
asymmetric controls.  For example, if the longitudinal stick in a given model has a range of -6 in. to 12 in., the 
supplier must document whether: 

• The model applies the scale factor of 12 in. to positive and negative stick values but treats all 
normalized values less than -0.5 as -6 inches. 

• Or, the model applies a factor of 6 in. to negative stick values and a scale factor of 12 in. to positive 
stick values. 

Choosing a different solution for each model reintroduce some tailoring of the interface; thus, organizations should 
choose the same scaling solution for asymmetric controls when possible. 

B. Integration Strategy 
The strategy that the rehostable model uses to integrate derivatives can impact its reuse in other applications. 

Integration strategy encompasses the integration algorithms, timing of integration, and how chains of integrators 
behave.#  LaSRS++ and Simulink®/Real-Time Workshop® integration strategies are a good contrasting example. 

                                                           
# Fixed vs. variable time step is also a consideration. However, this paper will assume that target applications 
accommodate fixed time steps. The Model package in LaSRS++ was not designed to assume a fixed time step. Time 
step can be retrieved from a Timer object whenever it is used. However, the Simulation Control package assumes a 
fixed time step since FSSB runs only simulations using a fixed time step. FSSB has not validated the Model package 
using a variable time step. Thus, a vehicle implementation may contain assumptions that the time step is fixed. 
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Each product uses the integration strategy to achieve different goals. LaSRS++ uses an integration strategy that 
minimizes transport delay.** Simulink® uses a mathematically consistent strategy that produces uniform results for a 
broad array of analysis techniques. In its integration strategy, LaSRS++ uses a variety of integration algorithms. 
Integration algorithms in the EOM are selected to obtain the best approximation for a given state while minimizing 
transport delay. For example, the LaSRS++ integration algorithm for position is a truncated tailor series that uses 
both velocity and acceleration so that pilot actions, which result in acceleration changes, affect position in one 
frame. Typical LaSRS++ dynamic models perform integration inline, i.e. at the point in the model where the 
integrator appears. The effect of a derivative change (which may trace back to pilot actions) is immediately 
communicated downstream and will affect vehicle behavior within one frame. In a chain of integrators, the first 
derivative will influence the result of the last integrator in one frame. Simulink® uses the same integration algorithm 
for all integrators by default. Simulink® performs all integrations as a distinct stage within a frame. In a chain of 
integrators, the result of a predecessor integrator does not flow to the next integrator in the same frame. Thus, a 
change in a derivative at the start of a chain of three integrators will take two additional frames to affect the outcome 
of the last integrator. The different integration strategies give rise to special considerations and constraints when a 
component from either environment is rehosted in the other. To maintain minimum transport delay when a Simulink 
component is rehosted in LaSRS++, the LaSRS++ developer must run the component (or the whole vehicle model) 
at a integer multiple of the hardware I/O rate; the integer multiple is equal to the length of the longest chain of 
integrators in the Simulink model.9 When a typical LaSRS++ component is rehosted in Simulink, the component 
does not provide centralized control of its integrators that acquirers could delegate to Simulink. The component will 
retain control of integrators and run them during the output computation phase in Simulink. The component can be 
used to run a simulation in Simulink®, but it will not produce correct results in analysis tools that require 
manipulation of the states (e.g. Simulink’s linear modeler). 

The ideal rehostable model would be capable morphing to different integration strategies. LaSRS++ has design 
characteristics that enable some morphing of its integration strategy. LaSRS++ integrators are part of a polymorphic 
class hierarchy whose base class is Integrator. The Integrator base contains the necessary interface for operating 
integrators; all modeling code operates the integrators through the base-class interface. The algorithm that the 
modeling code will invoke depends on the type of Integrator object that the model constructs. The model can allow 
the integration algorithm to change without changing the modeling code by providing methods that replace the 
Integrator object(s). The LaSRS++ EOM does provide this capability. However, subsystem models are not required 
to provide this capability, and none of the currently implemented subsystem models do. The models could easily add 
this capability at a later date if required. An acquirer could use the LaSRS++ Integrator design to create a new 
integrator type that delegates the integration to the application’s integration engine. Using integrator replacement 
methods in the LaSRS++ EOM and subsystem models, the acquirer could replace the model’s existing integrators 
with the application-specific integrator to delegate all integration control to the application. This mechanism could 
allow an application like Simulink® to control the integration of a LaSRS++ model. However, the acquirer would 
have to learn the model’s decomposition and the location of all the integrators in the model. The resulting 
integration code would be tailored to the specific model. Creation of a generic interface requires a central access 
location for all of the model’s integrators. The integrator list in the LaSRS++ EOM could be used for this purpose. 
The LaSRS++ EOM provides a method to add integrators to this list. The EOM operates all integrators on the list at 
a specific stage in the frame (after LaSRS++ computes vehicle accelerations and world dynamics). Because the 
LaSRS++ design guideline for subsystem models is inline integration, the subsystem models do not currently add 
their integrators to the list. It is possible to design a LaSRS++ vehicle to centralize access and control of its 
integration. Thus, a LaSRS++ vehicle could be designed to use the same integration strategy as Simulink. But, it is 
not currently possible to support both an inline and staged strategy in the same vehicle. This too could be changed 
with some design tweaking. A switch that can be set to inline or staged operation could be added to the base 
Integrator class. Subsystem models would then be required to both add their integrators to the EOM’s integrator list 
and call the integrators inline. Whether the inline operation or the staged operation would run the integration 
algorithm would depend on the switch setting. LaSRS++ could emulate a vehicle-wide setting for the switch using 
the integration list in the EOM. User demand will determine whether future work implements this modification. 

V. Defining Scenarios and Model Validation 
The paper discusses defining scenarios and model validation together because defining scenarios is the first step 

in model validation. Though most scenario definition activity is intended for operational use, design decisions 

                                                           
** The delay between observer action and observation of the action’s results. 
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should consider simplification of model validation. At a minimum, a rehostable model must allow acquirers to 
define new scenarios without code changes. The rehostable model cannot contain a finite set of hard-coded scenarios 
with the expectation that they will fulfill the needs of all users. The model could provide a programming interface 
that allows acquirers to code scenarios. The Model package in LaSRS++ does provide such an interface. Model 
classes provide methods for setting initial values, and the trim engine provides methods for selecting rules that 
describe the vehicle action in the scenario (e.g., a coordinated turn). Using a programming interface for scenario 
flexibility puts a burden on acquirers to write and test scenario code. Acquirers must also learn the internal structure 
of the rehostable model. The supplier must communicate this knowledge through training or documentation. 
Retraining and code modification will be necessary if the internal structure of the model changes. FSSB has had 
such experience rehosting Simulink®/Real-Time Workshop® components in LaSRS++, which uses the 
programming interface in the generated code for initialization. The internal structure of Real-Time Workshop® 
generated code has changed in the last three versions of the product. Each version has led to a cycle of re-learning, 
code modification, and validation. Cutting the additional cost for development and learning is desirable for internal 
deployment, and appreciated by external customers. 

A programming interface also introduces problems for scenario sharing. Sharing scenarios is common among 
development teams on the same project. A supplier team must share scenarios as part of delivering the model; the 
supplier must bundle a set of scenarios with the model for validation testing in new applications. Scenario sharing is 
necessary between an acquirer and supplier when they collaborate on debugging of suspicious behavior. The 
scenario for a programming interface must be communicated as a description or a code fragment. A description 
cannot be tested for completeness and is therefore subject to omissions. Both communication forms require 
translation (e.g. code modification) into the target application; a translation step can introduce a defect. A better 
design for scenario definition is native support in the rehostable model for a script language. Acquirers need only 
learn the script language to define new scenarios. The internal structure of the rehostable model can change without 
impacting acquirers if the script language remains unchanged. Scenarios would be shared as scripts. The rehostable 
model executes the scripts directly; the acquirer performs no translation of the script that can insert a defect. The 
supplier can test the script for completeness before distributing it. Thus, the acquirer can be confident that a 
discrepancy in check case results is not the result of missing scenario information. 

The LaSRS++ Model package provides a script language for defining the available scenarios of a vehicle object. 
An example script appears in the Appendix, Section A. The script language assigns a number to each scenario. The 
target application can then load a scenario by passing a number to vehicle object; the default case is zero if no case 
is passed. The LaSRS++ Model package provides a similar script language to configure the environment model for 
the scenario. This script is normally stored in a configuration file that also contains settings for the other LaSRS++ 
packages. The Model package reads the configuration file and ignores settings for the other packages. Both the 
configuration file and the vehicle's scenario file are necessary to define a complete scenario for the Model package. 

The Introduction listed incomplete scenario definitions as one problem with supplied check cases. The scripted 
scenario definition discussed here solves this issue for static check cases (i.e. trim algorithm results) and dynamic 
check cases (i.e. time history results) without perturbations of cockpit controls. However, the scenario script does 
not describe cockpit perturbations for dynamic check cases. Section II established cockpit inputs as data external to 
a rehostable model. From this perspective, scripted cockpit perturbations are the responsibility of each target 
application. An organization can gain the same benefit as scripted scenarios by agreeing on a standard script 
language for cockpit perturbations. However, each acquirer must develop the execution engine for the script. A 
rehostable model with native support for cockpit perturbation scripting would alleviate the additional development. 
The feature would require an on-off switch in order to hand cockpit control to the target application. An alternative 
solution is to supply a rehostable model for cockpit perturbations.†† This would be the preferred solution for 
LaSRS++. The LaSRS++ architecture strictly assigns responsibility for cockpit inputs to the hardware packages. 
Within the Hardware Interface package, LaSRS++ currently provides a DynamicCheckCockpit hierarchy for 
scripting cockpit perturbations. This hierarchy is not currently rehostable because it does not exhibit the necessary 
architectural isolation that would allow it to be physically separated from the remainder of LaSRS++ (outside of 
itself and the Model package). Future work will make the necessary design modifications. 

The rehostable model reduces or eliminates the remaining problems with model validation that the Introduction 
lists: incomplete results, insufficient code coverage by check cases, and missing environment models and 
algorithms. The focus of model validation for a rehostable model is not the model’s code but the acquirer’s interface 
code. A re-engineering effort can get lost attempting to track down the source of a discrepancy with incomplete 

                                                           
†† This component may not strictly be rehostable because it can depend on the rehostable model. 
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results. A rehosting effort knows that the likely cause is the interface code‡‡, which should be less code to search 
than the model code. A rehostable model allows the supplier to easily eliminate the issue of incomplete results. The 
supplier can rehost the model in a simple program that runs the check cases and add the program to the delivery. If 
the acquirer finds the check case results to be incomplete, the acquirer can obtain the missing data by running the 
check-case program. Ideally, re-engineering efforts require check cases that cover a substantial amount of the model 
code to independently validate the re-engineered models. Rehosting efforts only require check-cases that cover all of 
the interfaces. If the supplier provides a check-case program, the acquirer can add any missing check cases to the 
program in order to obtain an independent result for validation. Finally, the rehostable model includes the supplier’s 
environment models and algorithms so this is not a problem for rehostable model. A rehostable model bundled with 
a check-case program also eliminates the three check case problems for an acquirer that decides to re-engineer the 
model. The check-case program represents a small but complete executable copy of the supplier’s model, which the 
acquirer is free to observe and to which the acquirer can add new check cases. 

VI. Transforming an Existing Architecture for Rehosting 
An organization that decides to peruse rehosting as a solution for model deployment has the choice between 

modifying their existing simulation architecture for rehosting or building a new architecture from scratch. LaSRS++ 
represents an example of how design choices in an existing architecture can enhance or detract from the 
transformation of an abstraction level into a rehostable component. Few of the design choices described earlier were 
made with the purpose of creating rehostable components. The original purpose of the mediator for Hardware I/O 
was to allow a vehicle model to run in any cockpit.6 However, it also provides the added benefit of isolating the 
Model package from the hardware design. Designing packages to parse their settings from the configuration file was 
done to simplify the work of adding project-specific configuration settings to the file. The welcome side effect was 
reducing the interface for configuration settings to passing a single file. The VehicleSystem mediator was originally 
designed to allow unit testing of subsystem models and integration of reusable subsystem models from third parties.7  
However, its contribution to creating rehostable LaSRS++ subsystem models was recognized at the time of its 
design. Inserting time and simulation control data as object references was initially intended to prevent every 
dynamic model class from depending on the Simulation Control package and to allow some models to run with 
different time steps and simulation control data than their creator. However, this last goal left open the possibility for 
some dynamic models to remain bound to the Simulation Control package. In other words, not all simulation control 
data and services were packaged into independent classes initially. Reigning in the remaining simulation control 
data and services constituted the bulk of recent work to make the Model package in LaSRS++ a rehostable 
component.  

The LaSRS++ architecture did not start with characteristics that would facilitate rehosting at the Universe level 
of abstraction. Each of the above design decisions represents an evolutionary step in the LaSRS++ architecture that 
was a large effort individually. Even the recent design tweaking has introduced small changes to 385 LaSRS++ 
classes. Different design choices could have caused the redesign of the Model Package as a rehostable model to be 
cost prohibitive. For example, LaSRS++ could have allowed the Model classes to retrieve timing and simulation 
control information directly from the Simulation Control package. Because Simulation Control stores this 
information in a class utility§§, it would be easier for a developer to retrieve this data directly rather than code the 
passing of object references through multiple layers of abstraction. Always taking the easy coding path eventually 
leads to spaghetti code and the blurring of responsibilities. For example, the Hardware I/O code could have been 
designed to provide raw inputs. Vehicle developers would be responsible for scaling the inputs for the vehicle. The 
developers could choose to scale the inputs where they are used. This would spread the scaling code among multiple 
classes. These classes would be responsible for both scaling inputs and modeling part of the vehicle. Each class 
would require modification in order to create a rehostable component whose cockpit inputs were normalized. 
Although LaSRS++ was not originally architected for model rehosting, some luck and foresight in its evolution 
positioned the architecture for rehosting at the Universe level of abstraction.  

The current LaSRS++ architecture, however, is not well positioned to transform the Vehicle level of abstraction 
into a rehostable component. LaSRS++ vehicles are bound to the Universe level above them. LaSRS++ vehicles 
directly access the world models for atmosphere, gravity, terrain, and navigation database information. Relative 

                                                           
‡‡ The occasional compiler bug or previously undetected portability defect are remote possibilities. 
§§ A class utility only has static methods and data. For a class to access a class utility, the class simply includes the 
class utility header and makes scope-qualified method calls directly. It is similar in ease of use to making external 
calls to global functions. 
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Figure 4 Comparison of Pitch Stick (a) and Theta (b) Between Rehosting Example and LaSRS++
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o libplayback.a – playback classes 
o libtrim.a – trim algorithms 

• The LaSRS++ toolbox library – libtoolbox.a 
The rehosted program size was 64MB.  A LaSRS++ executable containing the same model is nearly four times as 
large, 244MB.  Figure 4 compares the pitch stick and pitch (theta) values output by the sample program with the 
outputs from the full LaSRS++ simulation. As expected, the outputs are identical. 

VIII. Conclusions 
Model rehosting is verbatim reuse of a semi-autonomous model. Rehosting at the Universe level of abstraction 

provides the greatest potential for low-cost model deployment in an organization where identical model behavior 
across target applications is the main goal. Other levels of abstraction such as the Vehicle or Subsystem Model will 
require re-engineering and re-validation of environment models and algorithms (e.g. EOM and trim). Also, the 
Universe level has the smallest input interface and performs more control work per interface command than the 
other levels. However, the other abstraction levels may be more desirable in situations where identical model 
behavior is a lesser concern and finer control over a vehicle model or its parts is required. Cost will also play a 
factor. Depending on the original design and evolution of an existing simulation architecture, certain abstraction 
levels may require less effort to redesign for rehosting than others. In a few cases, creating a new architecture may 
be the most cost effective means of creating rehostable models. 

A rehostable model must exhibit some key design characteristics. The rehostable model must be architecturally 
isolated from the supplier application. The communication mechanisms that the model employs must not establish 
dependencies external to the model. Mechanisms through which all inputs are pushed into the model and all outputs 
are pulled satisfy this criterion. These mechanisms can deploy intermediary objects and interfaces that have no 
external dependencies. These intermediaries become part of the interface of the model when it is rehosted. The 
rehostable model must relinquish control of its external interactions to the targets of those interactions. In some 
cases, this requires reformulating the interaction so that the external object requests a service from the model. In 
other cases, independent intermediaries can be used as proxies for services. 

The definition of the model’s data and services must refrain from retaining assumptions that logically tie the 
model to the supplier’s environment. For a rehostable Universe, providing a normalized cockpit interface divorces 
the model from the supplier’s hardware environment while allowing acquirers to build generic interfaces for a 
variety of vehicles. The model’s use of integrators should be customizable to accommodate different integration 
strategies (e.g. algorithm replacement and inline vs. staged integration). 

A rehostable Universe must give acquirers the means to define new scenarios. Native support for a scripting 
language fills this need while providing an error-free means of sharing scenarios among different teams. Scenario 
sharing is an important component of model validation. Model validation takes on a slightly different meaning in a 
rehosting effort of a Universe-level abstraction than in a re-engineering effort. In re-hosting, model validation 
focuses on finding defects in the interface code. The acquirer reuses the same model code as the supplier and it 
should need no re-validation. Thus, rehosting efforts suffer less from deficiencies in supplier’s check cases. A 
rehostable Universe also provides a unique opportunity for the supplier to deliver an executable model in the form of 
a check-case program. The check-case program frees the acquirer to observe the complete set of model outputs and 
to create additional check cases. A check-case program makes a rehostable Universe a valuable asset to acquirers 
whether they choose to rehost or re-engineer. 

Appendix 

A. Scenario Script Example from LaSRS++ 
The text below is a selection from the scenarios script that FSSB supplies as a default for the Boeing 757 model. 

The script shows the case used in the code example in Section VII.  
case: all 
  clear recording set list. 
  record time:                  true 
  record positional model base: true 
  record positional model body: true 
  record vehicle body:          true 
  record aero coefficients:     true 
  record aircraft air:          true 
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  record aircraft air velocity: true 
  record landing gear:          true 
  record propulsion:            true 
  record cockpit:               true 
  trim maximum iterations:      4000 
break; 
 
case: 2 
  runway as primary ref point: KDFW:RW18R 
  geodetic coordinates: lat 32.194  deg, lon -98.662 deg, alt 24000 
  flap handle position: 0.0  
  gear handle: LANDING_GEAR_UP  
  weight: 180000.0 
  initial cg as percentage mean aerodynamic chord: 0.15  
  moments of inertia relative to CG. 
  Ixx: 1.219999e+06 
  Iyy: 5.306344e+06 
  Izz: 6.349998e+06 
  Ixz: 1.52999e+05  
  initial fuel weight: 30000.0 
  euler angles: phi 0.0 deg, theta 0.0 deg, psi 92.0 deg 
  straight flight on speed set. 
    straight flight on speed vtotal: 280.0 
    straight flight on speed type: INDICATED 
break; 

B. Source Code for Rehosting Example in C++ 
The code comments explain LaSRS++ interface usage not described elsewhere in this document. 
 

#include "B757Base.hpp" 
#include "Cockpit.hpp" 
#include "ControlLoader.hpp" 
#include "Mode.hpp" 
#include "PositionalModelInitialInfo.hpp" 
#include "Timer.hpp" 
#include "Universe.hpp" 
 
int main() 
{ 
  Mode      mode(Mode::RESET); // Mode encapsulates operational state. 
  Timer     timer(0.020);      // A 20 millisecond time step (50 Hz). 
 
  // LaSRS++ supports M vehicles on N processors. A model must be assigned  
  // to a processor group. In this code, all models are assigned to  
  // processor group 0. Universe methods must be passed the processor group, 
  // to which the action applies. Only one processor group is needed for  
  // this single thread example.  
  const int processor_group = 0; 
 
  // Create the Universe (i.e. the Model package). "siminit" is the name of 
  // the configuration file. 
  Universe  universe(timer, mode, processor_group, "siminit"); 
 
  // LaSRS++ packages the construction data for a vehicle into a 
  // PositionalModelInitialInfo object. In LaSRS++, the top of the vehicle 
  // hierarchy is PositionalModel. The vehicle will obtain the configuration 
  // file from universe. The "initialization filename" defined below    
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  // contains the scenario definitions which the file identifies by number. 
  PositionalModelInitialInfo constructor_data(&universe); 
  constructor_data.putCpuId(processor_group); 
  constructor_data.putInitializationFileName("b757_init_file.ic"); 
  constructor_data.putInitialCaseNumber(2); 
 
  // Construct a Boeing 757 object. LaSRS++ vehicles add themselves to  
  // Universe's list of vehicles. 
  B757Base b757(constructor_data); 
 
  // RESET Operations (Scenario Definition) 
 
  // Mode transition requires two steps. Requesting the transition and 
  // executing the request. In LaSRS++, this design allows any object to  
  // request a transition at any time in the frame, but LaSRS++ will only 
  // executes requests at the end of the frame. 
  mode.putRequestedState(Mode::RESET); 
  mode.update(); 
   
  // Multiple passes are required for some vehicles to properly initialize 
  // all variables.  
  for(int i = 0; i < 50; i++) 
  { 
    universe.resetEnvironment(processor_group); 
    universe.resetPositionalModel(processor_group); 
 
    // Mode must be updated at the "end" of each frame because it tracks 
    // past values. 
    mode.update(); 
  } 
 
  // TRIM Operations (Solve for Scenario Steady State) 
  mode.putRequestedState(Mode::TRIM); 
  mode.update(); 
  universe.doTrim(processor_group); 
 
  // HOLD Operation (Freeze Model) 
  // Some models need at least one frame in HOLD before entering OPERATE. 
  mode.putRequestedState(Mode::HOLD); 
  mode.update(); 
  universe.doHold(processor_group); 
 
  mode.putRequestedState(Mode::OPERATE); 
  mode.update(); 
  // Timer operations do not change the Timer attributes until run is called. 
  universe.getTimer().run(); 
 
  for(int i = 0; i < 1000; i++) 
  { 
    // At five seconds, execute a doublet with pitch stick movement in each 
    // direction for five seconds. 
    if (i == 250) b757.getCockpit()->getControlLoader()->putPitchStick( 0.5); 
    if (i == 500) b757.getCockpit()->getControlLoader()->putPitchStick(-0.5); 
    if (i == 750) b757.getCockpit()->getControlLoader()->putPitchStick( 0.0); 
 
    universe.doOperate(processor_group); 
    universe.updateEnvironment(processor_group); 
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    universe.propagatePositionalModel(processor_group); 
 
    universe.getTimer().increment(); // Increments elapsed time. 
    mode.update(); 
  } 
 
  // PRINT Operations (Write Data File) 
  // The LaSRS++ Model package includes data recording. The data is  
  // written to memory during OPERATE to maintain real-time execution. 
  // The memory contents are dumped to file when PRINT mode is executed. 
  mode.putRequestedState(Mode::PRINT); 
  mode.update(); 
  universe.doPrint(processor_group); 
 
  // Remove the Boeing 757 vehicle from the Universe list. The B757  
  // object will be destroyed when the program exits and implicitly  
  // calls the B757 destructor. 
  universe.delPositionalModel(&b757); 
 
  return 0; 
} 
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